A new histogram modification based reversible data hiding algorithm considering the human visual system

Jung S.-W., Ha L.T., Ko S.-J.
Department of Electrical Engineering, Korea University, Seoul, South Korea; Department of Information Technology, University of Engineering and Technology, Vietnam National University, Hanoi, Viet Nam

Abstract: In this letter, we propose an improved histogram modification based reversible data hiding technique. In the proposed algorithm, unlike the conventional reversible techniques, a data embedding level is adaptively adjusted for each pixel with a consideration of the human visual system (HVS) characteristics. To this end, an edge and the just noticeable difference (JND) values are estimated for every pixel, and the estimated values are used to determine the embedding level. This pixel level adjustment can effectively reduce the distortion caused by data embedding. The experimental results and performance comparison with other reversible data hiding algorithms are presented to demonstrate the validity of the proposed algorithm.

© 2006 IEEE.

Author Keywords: Data hiding; human visual system; just noticeable difference; lossless watermarking

Index Keywords: Data embedding; Data hiding; Histogram modification; Human Visual System; Human visual systems; Just-noticeable difference; Lossless watermarking; Performance comparison; Pixel level; Reversible data hiding; Graphic methods; Image processing; Pixels; Steganography; Algorithms

Year: 2011
Source title: IEEE Signal Processing Letters
Volume: 18
Issue: 2
Art. No.: 5648443
Page : 95-98
Link: Scopus Link
Correspondence Address: Jung, S.-W.; Department of Electrical Engineering, Korea University, Seoul, South Korea; email: jungsw@dali.korea.ac.kr
ISSN: 10709908
CODEN: ISPLE
DOI: 10.1109/LSP.2010.2095498
Language of Original Document: English
Abbreviated Source Title: IEEE Signal Processing Letters
Document Type: Article
Source: Scopus
Authors with affiliations:
• Jung, S.-W., Department of Electrical Engineering, Korea University, Seoul, South Korea
• Ha, L.T., Department of Information Technology, University of Engineering and Technology, Vietnam National University, Hanoi, Viet Nam
References: